foehnix.Foehnix(predictor, data, concomitant=None, switch=False, filter_method=None, family='gaussian', control=None, **kwargs)[source]¶Foehn Classification Based on a Two-Component Mixture Model
This is the main method of the foehnix package to estimate two-component mixture models for automated foehn classification.
__init__(predictor, data, concomitant=None, switch=False, filter_method=None, family='gaussian', control=None, **kwargs)[source]¶Initialize parmeters which all methods need.
| Parameters: | 
  | 
|---|
Methods
__init__(predictor, data[, concomitant, …]) | 
Initialize parmeters which all methods need. | 
no_concomitant_fit(y, control) | 
Fitting foehnix Mixture Model Without Concomitant Model. | 
plot(which, **kwargs) | 
Plotting method, helper function. | 
predict([newdata, returntype]) | 
Predict method for foehnix Mixture Models | 
summary([detailed]) | 
Prints information about the model | 
unreg_fit(y, logitx, control) | 
Fitting unregularized foehnix Mixture Model with Concomitant Model. |