foehnix.Foehnix(predictor, data, concomitant=None, switch=False, filter_method=None, family='gaussian', control=None, **kwargs)[source]¶Foehn Classification Based on a Two-Component Mixture Model
This is the main method of the foehnix package to estimate two-component mixture models for automated foehn classification.
__init__(predictor, data, concomitant=None, switch=False, filter_method=None, family='gaussian', control=None, **kwargs)[source]¶Initialize parmeters which all methods need.
| Parameters: |
|
|---|
Methods
__init__(predictor, data[, concomitant, …]) |
Initialize parmeters which all methods need. |
no_concomitant_fit(y, control) |
Fitting foehnix Mixture Model Without Concomitant Model. |
plot(which, **kwargs) |
Plotting method, helper function. |
predict([newdata, returntype]) |
Predict method for foehnix Mixture Models |
summary([detailed]) |
Prints information about the model |
unreg_fit(y, logitx, control) |
Fitting unregularized foehnix Mixture Model with Concomitant Model. |